The synergy between bounded-distance HMM and spectral subtraction for robust speech recognition
نویسندگان
چکیده
Additive noise generates important losses in automatic speech recognition systems. In this paper, we show that one of the causes contributing to these losses is the fact that conventional recognisers take into consideration feature values that are outliers. The method that we call bounded-distance HMM is a suitable method to avoid that outliers contribute to the recogniser decision. However, this method just deals with outliers, leaving the remaining features unaltered. In contrast, spectral subtraction is able to correct all the features at the expense of introducing some artifacts that, as shown in the paper, cause a larger number of outliers. As a result, we find that bounded-distance HMM and spectral subtraction complement each other well. A comprehensive experimental evaluation was conducted, considering several well-known ASR tasks (of different complexities) and numerous noise types and SNRs. The achieved results show that the suggested combination generally outperforms both the bounded-distance HMM and spectral subtraction individually. Furthermore, the obtained improvements, especially for low and medium SNRs, are larger than the sum of the improvements individually obtained by bounded-distance HMM and spectral subtraction.
منابع مشابه
Uncertainty decoding on Frequency Filtered parameters for robust ASR
The use of feature enhancement techniques to obtain estimates of the clean parameters is a common approach for robust automatic speech recognition (ASR). However, the decoding algorithm typically ignores how accurate these estimates are. Uncertainty decoding methods incorporate this type of information. In this paper, we develop a formulation of the uncertainty decoding paradigm for Frequency F...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملSpectral subtraction in noisy environments applied to speaker adaptation based on HMM sufficient statistics
Noise and speaker adaptation techniques are essential to realize robust speech recognition in real noisy environments . In this paper, we applied spectral subtraction to an unsupervised speaker adaptation algorithm in noisy environments. The adaptation algorithm consists of the following five steps. (1) Spectral subtraction is carried out for noise added database. (2) Noise matched acoustic mod...
متن کاملSignal Trajectory Based Noise Compensation for Robust Speech Recognition
This paper presents a novel signal trajectory based noise compensation algorithm for robust speech recognition. Its performance is evaluated on the Aurora 2 database. The algorithm consists of two processing stages: 1) noise spectrum is estimated using trajectory autosegmentation and clustering, so that spectral subtraction can be performed to roughly estimate the clean speech trajectories; 2) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Speech Communication
دوره 52 شماره
صفحات -
تاریخ انتشار 2010